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ABSTRACT

Multimodal mathematical reasoning has gained increasing at-
tention in recent times. However, previous effective methods
have not tried to reason in the form of natural language. In this
paper, we introduce a model named MATHS (MultimodAl
Transformer-based Human-readable Solver) for visual arith-
metic and geometry problems in multimodal mathematical
reasoning tasks. Drawing inspiration from Multimodal Large
Language Models (MLLMs), our approach involves generat-
ing problem-solving processes expressed in natural language,
in order to leverage the inherent reasoning capabilities em-
bedded within language models. To address the challenge
of precise calculations for language models, our work pro-
poses a Math-Constrained Generation (MCG) method to im-
pose hard constraints on generated outputs. Extensive experi-
ments demonstrate our model excels in visual arithmetic task,
and achieves results that are either better or comparable to
existing methods in geometry problems. Code is available at
https://github.com/ycpNotFound/MATHS.

Index Terms— Multimodal, Mathematics Reasoning,
Controllable Text Generation

1. INTRODUCTION

Recently, there has been a growing interest in multimodal
mathematical in the field of Al research. This includes vi-
sual arithmetic problems [1], geometry problems involving
calculations [2} 3| 4] and proofs [3]]. Furthermore, Multi-
modal Large Language Models (MLLMs) have emerged as
a new rising research hotspot, which utilize powerful Large
Language Models (LLMs) to perform a wide range of multi-
modal tasks [5]. Drawing inspiration from this development,
we aim to optimize the logical reasoning process into the form
of natural language description based on the existing language
models, with the goal of fully exploiting their latent reasoning
capabilities.

As examples of multimodal math reasoning shown in Fig-
ure [I] the visual arithmetic task entails inferring hidden re-
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Visual Arithmetic Problems

Previous: 72 (direct number)

Ours: in the first panel : 73 - 19 = 54, 67 - 13 = 54,
in the second panel : 83 - 29 = 54, 78 - 24 = 54,
so in the third panel : x - 18 = 54, 92 - 38 = 54
answer x = 72.

Geometry Problems

¢ Q:Asshown in the figure, AB is tangent to O at
point B, and the extended line of AO intersects
O at point C. Connect BC, if ZA =36, then
ZCisequalto ()
A B A.54 B.64 C.27 D.37

Previous: g_minus C_3 N_0 g_half V_0

Qurs: ~* AB cuts O to point B, ..
.. 2AOB = 90 - A = 54,
~~0C = 0B, .. «C = £0BC,
2AOB = «C + £OBC, .. «C = 27.

<0OBA = 90,

Fig. 1. Examples of multimodal mathematical reasoning,
which illustrates samples in visual arithmetic problems and
geometry problems. Rather than previous neural methods, our
method provides human-readable solution processes.

lationships between the numbers within each panel and pre-
dicting the missing number as the answer in the last panel [1]].
This task involves the execution of arithmetic operations on
numbers represented in visual objects. Concerning geome-
try problems, the specific tasks may involve calculations on
length, area, angle or other variables, as well as proving nu-
merical or geometric relationships in diagrams. In compar-
ison to visual arithmetic problems, geometric problems re-
quire more advanced abstract thinking abilities and often de-
pend on geometric theorems.

To forecast human-readable mathematical solutions, lan-
guage models may encounter hallucination issues [6, [7], gen-
erating incorrect or inconsistent solutions that violate mathe-
matical principles. In response to this challenge, we propose



the Math-Constrained Generation (MCG) method. Through
the external calculation module, our approach enables the im-
position of stringent constraints during the generation process
to uphold mathematical accuracy. Our method not only elim-
inates hallucination in calculations but also enables the model
to utilize reasoning ability in higher-level problem-solving
approaches.

Unifying multiple tasks in multimodal mathematical rea-
soning, we propose MATHS: MultimodAl Transformer-
based Human-readable Solver. MATHS provides a human-
readable problem-solving process for diverse types of multi-
modal mathematical problems, and can be conveniently trans-
ferred to these tasks by using task-specific calculation mod-
ule. We employ a pre-trained transformer encoder to extract
visual information, which is subsequently passed as input to
the cross-attention module of the transformer decoder layers.
To enable the model to invoke the calculation module during
generation, we introduce specialized tokens at specific loca-
tions in the solution sequences. We conduct extensive abla-
tion experiments to demonstrate the efficacy of this approach.

Overall, our contributions can be summarized into three
parts: (1) We unify diverse tasks in multimodal mathemat-
ics reasoning through the MATHS framework, a transformer-
based model capable of generating problem-solving pro-
cesses in natural language format. (2) We introduce a
math-constrained generation method, ensuring the mathemat-
ical correctness of the generated content. (3) Experiments
on existing datasets demonstrate that our method achieves
outstanding performance in visual arithmetic problems and
yields commendable results in geometry problems.

2. RELATED WORK

2.1. Multimodal Mathematics Reasoning

The field of multimodal mathematics reasoning encompasses
various tasks, one of which is solving visual arithmetic prob-
lems. The evaluation of this task is done using the Machine
Number Sense (MNS) dataset [[1], which is created by And-
Or-Graph (AOG) [8]]. In the field of psychology, “number
sense” provides an explanation of the cognitive process of
numbers in humans. It is believed that the sense of numbers
refers to the understanding of number concepts, proficiency
in numerical operations, and the ability to solve mathemati-
cal problems flexibly [1]]. Existing neural methods for visual
arithmetic problems only predicted the final answer and over-
looked the calculation process that involves rich mathematical
information, leading to suboptimal performance.

Multimodal mathematics reasoning also includes geom-
etry problems, such as calculation, proving [3] and diagram
parsing [9]. Although neural methods have achieved results
comparable to those of human in geometry, a symbolic solv-
ing sequence is required as the predicted label, which poses a
challenge for human comprehension. Language models, par-

ticularly large language models (LLMs) [10, [11]], commonly
express solutions in natural language form. However, there
have been no attempts to predict solutions in natural language
for geometry problems. Furthermore, the task of diagram
parsing presents difficulties for language models in perform-
ing detection and segmentation functions, so this work exclu-
sively focuses on calculation and proving tasks.

2.2. Controllable Text Generation

Controllable Text Generation (CTG) [12] refers to the task
involving generation of text by Pre-trained Language Mod-
els (PLMs) [13] according to the given controlled element.
Based on traditional text generation, we can add control over
attributes, styles, key information, etc. of the generated text,
to ensure that it meets our expectations [14]. CTG meth-
ods for pre-trained language models typically require pre-
training [15]], fine-tuning [[16], or training of an external dis-
criminator [[17]. Additionally, there also exist post-process
methods that modify the appearance probability of words
without further training [18]. Previous work on CTG often
focuses on attribute-based generation, storytelling, or data-
to-text tasks. However, the imposition of constraints to limit
generation within mathematically correct ranges has not been
fully studied yet. In this work, we utilize a math-constrained
generation method inspired by post-process CTG methods, in
order to align generated text with mathematical correctness.

3. METHODS

3.1. Overview

Our model solves multimodal math reasoning problems
through an encoder-decoder framework, consisting of an im-
age encoder and a language decoder with cross-attention, as
shown in Figure[2] Such a structure enables the model to han-
dle various tasks in multimodal math reasoning. Each task
can be formulated as an image-to-text problem, where the in-
put is an image x and the output is a text label y generated by
the decoder with cross-attention. In cases where the inputs in-
clude text conditions, such as question text in geometry prob-
lems or task identification tokens, the label y can be divided
into prompt y,, and target y¢qrget cOmponents. Subsequently,
the decoder receives y,, as prompts and predicts the answer
Yans i an autoregressive manner. Finally, we compute the
loss function on y g, only using the target yiqrget-

3.2. Encoder-Decoder Framework

In this paragraph, we focus on our encoder-decoder frame-
work. Instead of relying on external OCR engine [2] or tex-
tual clauses [4]] to extract text information in diagrams, we uti-
lize an end-to-end transformer encoder from Donut [[19] that
is pre-trained for OCR task. This encoder is used to extract
both text symbols and visual features from an input image
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Fig. 2. Illustration of our MATHS framework using the MCG method. The MCG method is applied during inference. Specific

tokens are marked in red font.

x € RIXWXC The input image is encoded into a sequence
of embeddings {z;|z; € R%,1 < i < n}, where n represents
for number of image tokens and d stands for the hidden di-
mension of the encoder. On the other hand, the decoder is an
auto-regressive transformer that interacts with visual features
through cross-attention modules. These modules take visual
features {z} as keys and values, and current decoder hidden
states as queries. During training, we predict the next token
on the condition of the visual features {z} and previous con-
texts. Specifically, we compute the probability of predicting
answer tokens y .5 as follows:

L

p(}’ans |Z, Yp) = Hp(yz |Z, Yp,<is Yans,<i)
=1

ey

L is the length of total sequence of prompt and prediction
[Vps Yans)s Yp,<i and Yans <; respectively represent for the
prompt and answer tokens before the current prediction token
Yi-

3.3. Math-Constrained Generation Method

To ensure the mathematical correctness of the generated pro-
cesses, we propose the Math-Constrained Generation (MCG)
method. As illustrated in Figure 2] we introduce specific to-
kens to delineate the range of expressions in the training tar-
get. During inference, if the model generates the specific to-
ken at step n, a specific calculation program is invoked to
compute the expression between the special tokens, produc-
ing result tokens denoted as y,esqy¢- Subsequently, we max-
imize the the appearance probability of these result tokens in

each following decoding step. Specifically, we set the output
logits of the result tokens to be the maximum value among
all logits, assigning a small constant value to the logits corre-
sponding to other tokens. The process above can be formu-
lated as:

a’ = max(a”), if w = y:}esult (2)
v c, otherwise
P(Ynz, Yp,<n; Yans,<n) = softmax(a") 3)

Among the above, a” € RY represents the output logits,
ay, represents the logit of word w, and V' is the vocabulary
size of the language model. p(yn|2,¥Yp <n;Yans,<n) repre-
sents the probability distribution of the next token at step n.
Yresult € Yresuit Tefers to the result token that should be set
at step m. ¢ is a constant set to be smaller than max(a™).
Furthermore, the MCG method can be easily combined with
a beam search strategy through maintaining a queue for each
beam to record the calculation result tokens. Following the
MCG method, we forces the correct calculation result to be
the next prediction, while ensuring that other tokens do not to
appear.

4. EXPERIMENTS

4.1. Datasets and Metrics

Previous studies on visual arithmetic problems conducted ex-
periments on the synthetic dataset Machine Number Sense



System Process MCG Context Ans Acc Proc Acc Proc Acc/ Ans Acc
T1 28.85 - -
T2 v 39.99 29.66 74.17
T3 v v 40.13 34.31 85.51
T4 v v 50.87 40.95 80.51
TS v v v 64.98 57.30 88.18

Table 1. Comparisons of different designed systems (with the same visual inputs) from T1 to T5 on MNS dataset. “Ans Acc” is
the accuracy rate of final predicted answer. Positive samples of “Proc Acc” indecate that the processes, expressions and answer
must all be correct. “Proc Acc / Ans Acc” represents the proportion of positive samples in “Proc Acc” among the positive

samples in “Ans Acc”.

(MNS) [L]], which comprises 168k training samples, 56k val-
idation samples, and 56k test samples. To compare with pre-
vious methods that assess accuracy through image classifica-
tion, we define a successful solution as correctly predicting
the answer. We also calculate the accuracy on various types
of visual arithmetic problems, following previous literature.
We use top-1 accuracy of final answer with beam search of
size 10. Furthermore, it is considered detrimental if the model
predicts the correct answer but provides an incorrect solution.
Therefore, we evaluate the correctness of the generated in-
termediate process, which includes expressions and calcula-
tions. This evaluation involves assessing the models ability
to list correct expressions, perform calculations correctly, and
predict the right answer.

In the context of geometric problems, we assess sev-
eral existing datasets. Among them, the UniGeo [3]] dataset,
which consists of 4,998 calculation problems and 9,543 prov-
ing problems, proves to be in alignment with our require-
ments, as it features annotations of solution processes in a
natural language format. Additionally, we have also consid-
ered the PGPS9K [4] dataset, which provides high-quality
diagrams and detailed annotations. However, its annotation
of solutions is presented in the form of symbolic sequences,
which poses challenges for translation into natural language.
Therefore, We conduct experiments on the unified bench-
mark of both calculation and proving problems in the UniGeo
dataset. We only compare the final calculated result with the
target for the calculation questions. For proving questions,
a predicted proof is considered correct only if every step is
identical. We adopt top-10 accuracy with beam size of 10,
following previous work [20} 13]].

4.2. Implementation Details

Our model is implemented using Pytorch. We utilize a pre-
trained Swin-Transformer [21]] obtained from Donut [19] as
the encoder. The decoder employs a BERT [13]] architecture
with cross-attention layers. We initialize component weights
using pre-trained BERT weights, while the cross-attention
module undergoes random initialization. Considering accel-
erated training, we use BERT-base architecture for ablation
experiments and BERT-large for the final evaluation. We use

the AdamW optimizer with 57 = 0.9 and 82 = 0.999. The
model is trained on 8 Nvidia Quadro RTX 6000 GPUs with
a learning rate of 5e~°, following a linear learning rate de-
cay with a warm-up strategy. The input image is resized to
300 x 300, and the our model is trained for 20 epochs on the
MNS dataset with a total batch size of 64, and for 100 epochs
on the UniGeo dataset with a total batch size of 32.

4.3. Ablation Study

Visual Context Learning. Since the model requires predict-
ing the answer in the last panel of three panels, it is critical to
utilize the contextual information of the first two panels. In
order to validate this, we devise the systems T1, T2 and T4 as
shown in Table[I] With the same visual inputs, T1 represents
predicting direct answer without process, T2 only predict the
expressions and answer of the last panel, and the prediction
of T4 encompasses the entire process with the visual context
from other panels. Results show that the accuracy rate of T1,
T2, and T3 increases sequentially, which underlines the sig-
nificant influence that information in visual context holds in
reasoning.

Efficacy of MCG. We further explore the efficacy of our
MCG method. Language models can sometimes generate in-
correct solutions due to hallucinations in mathematical rea-
soning, while our MCG method can relieve this problem.
These phenomena can be found in system T2, T3 and T4,
TS5 in Tablem Utilizing the MCG method, T3 achieves a rela-
tively slight improvement in accuracy compared to T2, while
the accuracy of TS increase significantly compared to TS.
Furthermore, we design experiments to evaluate the correct-
ness of intermediate solution processes. We also calculate the
proportion of answer-correct samples in process-correct sam-
ples, which evaluates the credibility of the problem-solving
process. Results show that methods employing MCG increase
both accuracy and credibility of processes compared to meth-
ods without it, indicating the capacity of MCG to augment the
dependability of the generated solutions.



MNS UniGeo
Method .. .. ..
Combination = Composition Partition Mean Calculation Proving
H A H A H A

GPT-4! 35.00 1466 333 1195 21.79 21.59 1640 - -
GPT-4V ! 48.00 29.33 533 2040 2692 31.25 24.50 5.0 74.0
Human 66.82 93.64 61.36 78.18 77.27 88.18 77.58 - -
Search [1]] 64.38 56.08 29.81 61.84 59.70 67.59 56.70 - -
ResNet [1] 2790 2422 2342 2373 26.61 27.78 2529 - -
NGS [20] - - - - 56.9 53.2
Geoformer [J3]] - - - - - - - 62.5 56.4
MATHS (Ours) 63.51 7540 3394 79.72 52.81 80.10 65.72 57.0 83.5

' We test GPT-4 and GPT-4V on 1k samples in the MNS dataset and 100 samples in both calculation and proving task of UniGeo

dataset.

Table 2. Performance of previous state-of-the-art methods and our method. Combination, composition and partition refer to
different layout types of geometric elements. Holistic (H) and Analytic (A) represent distinct problem-solving styles. Bold

indicates the SOTA and underline indicates the second best.

MATHS w/o MCG: | MATHS:

in the first panel: 94 - 16 /8 = 89,
in the second panel: 99 - 21 /3 = 89,
so in the third panel: 93 - 86 / x = 89,
answer x = 43 (x)

MATHS with MCG:
in the first panel: 94 =16

in the second panel{ 99 — 21 / 3= 92

so in the third panel: 9
answer x = 86 (V)

| GT:

the straight line a /b, £2=35, ; v
a £3=40, then the degree of | /
p £lis() ; ]
A.75 B. 105 C. 140 D. 145

. £22=35 and £3=40,

_
z2 3 2ZWTX
|| MATHS:
£1= 22+ £3=70. || By given,
ZWTX & 2VUX.
|| By given,
(x) UVITw.

i vall b, 21= 24, and “ £2=35, £3=40,

| 2£4=180-35-40=105, .. ~1=105.

Given ZWTX £ /VUX
and UV // TW. Complete the
proof that L TWX £ V.

' | By Alternate Interior Angles Theorem,
‘ 2VUX 2 ZTWX.
! By Transitive Property of Congruence,
ZWTX 2 2TWX, ZTWX 2 2V.

Fig. 3. Examples of outputs and cross attention maps. Special characters are omitted for ease of reading.

4.4. Comparison with State-of-the-art Methods

Table 2] presents the experimental results of our top-
performing execution on the MNS dataset, where the per-
formance of humans [1]] and and results of previous neural-
based and symbolic-based methods are also shown in. Search,
which means context-guided search [1]], takes numbers and
semantic context information as input. The ResNet baseline
predicts the answers from 0 to 99 according to input images.
Our method outperforms both previous neural network and
search-based methods on average. We also achieves excel-
lent results in a majority of categories from the MNS dataset.
However, it’s relevant to note that humans perform better than
our method on average and in some categories.

Table 2] also shows the results on the UniGeo dataset. It is
observed that our method exhibited lower performance com-

pared to existing state-of-the-art methods. It should be noted
that our method focuses on generating contents of natural lan-
guage form, and uses labels different from previous meth-
ods that utilize symbolic sequences. Therefore, the results
are not entirely comparable. Besides, Geoformer [3] is pre-
trained with carefully designed pre-training tasks, while our
MATHS does not. However, experiments on this dataset can
also demonstrate the transferability of our framework. We
will leave the design of a universal pre-training strategy for
multimodal mathematical reasoning for future work.

Our method have achieved advancements in solving prov-
ing problems. Besides the effectiveness of our model in nat-
ural language processing, this result can be attributed to the
similarity of the word and diagram distributions in the train-
ing set and the test set, which indicates that the solutions in



the proving dataset may lack diversity for language models.
Furthermore, the application of MCG to geometry problems
is challenging, because the solutions of calculation problems
almost do not involve calculation processes, and the proving
questions do not require additional calculations either.

Additionally, we evaluate the performance of GPT-4 and
GPT-4V providing images and instructions with one-shot
prompting strategy. It can be observed that GPT-4V achieves
a higher average accuracy than GPT-4 with text only on the
MNS dataset. As for geometry problems, we only evaluate
the performance of GPT-4V, which achieves poor results in
calculation task and relatively comparable results in proving
task. For specific analysis and prompt design, please refer to
the supplementary materials.

4.5. Case Study

As illustrated in Figure [3] we present three instances to elu-
cidate both the efficacy and shortcomings of the model. We
also draw cross-attention maps at some important steps in the
last layer of our model. In the first case of visual arithmetic
problems, our MATHS without MCG predicts the correct ex-
pressions of three panels correctly, but outputs the wrong cal-
culation results, indicated in bold red font. Through MCG,
our model can correctly outputs the calculation results, and
finally predicts the correct answer. In the second case of ge-
ometry calculation problem, our model make typical geomet-
ric mistakes violating geometric theorems, also shown in bold
red font. Attention maps also illustrate that attention is paid
to key positions by our model, but the generated reasoning
process is wrong. In the third case of proving question, our
model predict the correct proof, but the attention maps is not
entirely in accordance with our expectations. It is still chal-
lenging for language models to align generated content with
geometric diagrams and theorems.

5. CONCLUSION

In this work, we propose MATHS, a framework based on mul-
timodal transformers that provides human-readable solutions
for a range of multimodal mathematics reasoning tasks. We
also present a math-constrained generation method that facili-
tates the production of precise and credible solutions. Experi-
mental results demonstrate exceptional performance in visual
arithmetic problems and commendable results in geometry
problems, indicating the effectiveness of our approach. To
further advance our work, we will strive to design effective
multimodal pre-training strategies. Moreover, we aim to ex-
pand our paradigm of natural language problem-solving and
math-constrained generation method to large language mod-
els (LLMs).
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