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Abstract—In recent research, slight performance improvement
is observed from automatic speech recognition systems to audio-
visual speech recognition systems in end-to-end frameworks
with low-quality videos. Unmatching convergence rates and
specialized input representations between audio-visual modalities
are considered to cause the problem. In this paper, we propose
two novel techniques to improve audio-visual speech recognition
(AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-
level subword units in Mandarin through a frame-level subword
unit classification task with visual streams as input. The fine-
grained subword labels guide the network to capture temporal
relationships between lip shapes and result in an accurate
alignment between video and audio streams. Next, we propose
an audio-guided Cross-Modal Fusion Encoder (CMFE) to utilize
main training parameters for multiple cross-modal attention
layers to make full use of modality complementarity. Experiments
on the MISP2021-AVSR data set show the effectiveness of
the two proposed techniques. Together, using only a relatively
small amount of training data, the final system achieves better
performances than state-of-the-art systems with more complex
front-ends and back-ends. The code is released at1.

Index Terms—audio-visual speech recognition, end-to-end sys-
tem, GMM-HMM

I. INTRODUCTION

Audio-visual speech recognition (AVSR) is a multi-modality
application motivated by the bi-modal nature of perception
in speech communication between humans [1]. It utilizes
lip movement as a complementary modality to improve the
performance of automatic speech recognition (ASR). In early
research, handcrafted lip features were commonly extracted
and added to hybrid ASR systems [2]–[5]. Recently, end-to-
end AVSR systems have achieved great success due to the
simplicity of end-to-end ASR system designs and an availabil-
ity of a large number of public audio-visual databases [6]–
[14]. Although end-to-end AVSR systems have shown their

*corresponding author
1https://github.com/mispchallenge/MISP-ICME-AVSR

simplicity and effectiveness on many benchmarks [15]–[20],
they are still far from common use. One hard piece of evidence
comes from the recent MISP2021 Challenge [21].

As the largest Mandarin audio-visual corpus until now,
MISP2021-AVSR is recorded in TV rooms of home envi-
ronments with multiple groups chatting simultaneously. Mul-
tiple microphone arrays and cameras are used to collect
far/middle/near-field audios and far/middle-field videos. In the
evaluation stage, submitted systems are restricted to utilizing
far-field audio and videos for the AVSR task. According to
the reports from top-ranked teams [16], [22], [23], low-
quality far-field videos could only slightly improve the AVSR
performance over ASR systems under a common end-to-end
framework. The performance degradation from a uni-modal
network to a multi-modal network is also observed in [24].
Compared to the uni-modal model, it is challenging to learn an
extensive integrated neural network due to unmatched conver-
gence rates and specialized input representations between two
modalities [24], [25]. Pre-training techniques [15], [26], [27]
are expected to alleviate the problem which decouples the one-
pass end-to-end training framework in two stages. Uni-modal
networks are first pre-trained and later integrated into a fusion
model following unified fine-tuning. This divide-and-conquer
strategy could effectively mitigate variations in learning dy-
namics between modalities and promote their interactions.

A crucial aspect of the decoupled training framework is
how to pre-train the visual frontend. A simple practice comes
from [16], [22], which directly uses a pre-trained visual
frontend [28] as a frozen visual embedding extractor. This
approach gives only a small improvement due to domain
shifts across the source and target domains. For most studies,
researchers pre-train the visual frontend on an isolated word
recognition task [15], [26], [29] and then fine-tune it with the
AVSR model. However, these pre-training methods depend on
word-level lipreading data sets that are challenging to collect
on a large scale. A recent study [27] leverages self-supervised



Fig. 1. Overall training framework of our AVSR system

learning on large-scale unlabeled data sets for AVSR. Al-
though these pre-training methods improve the AVSR system
performances to a certain extent, a large amount of extra
labeled/unlabeled data is used.

In this paper, we propose a subword-correlated visual pre-
training technique that does not need extra data or manually-
labeled word boundaries. We train a set of hidden Markov
models with Gaussian mixture model (GMM-HMMs) on far-
field audio to produce frame-level alignment labels and pre-
train the visual frontend by identifying each visual frame’s cor-
responding syllable-related HMM states. Compared to the pre-
training method based on end-to-end continuous lipreading,
our method explicitly offers syllable boundaries to establish
a direct frame-level mapping from lip shapes to syllables
in Mandarin. These fine-grained alignment labels guide the
network to focus on learning visual feature extraction of low-
quality videos. On the other hand, this pre-training method
could be viewed as a cross-modal conversion process that
accepts video frames as inputs and generates acoustic subword
sequences. It is helpful to explore potential acoustic informa-
tion from lip movements and contributes to a good adaptation
process with the audio stream in the fusion stage.

In the fusion stage of decoupled training, the initialized
audio and visual branches already have the fundamental ability
to extract uni-modal representations. Based on the straight-
forward assumption that the audio modality contains more
linguistic information essential for ASR tasks. We propose a
novel CMFE block in which the audio modality dominates
and more training parameters of the network are used for
modality fusion modeling. As for the modality fusion struc-
tures, motivated by the decoder architecture of the vanilla
transformer [30], the layer-wise cross-attention is designed in
different layers to make full use of modality complementarity.

In summary, for this paper, we make the following contri-
butions: (1) we propose a visual frontend pre-training method
to correlate lip shapes with the syllabic HMM states. It does
not require extra labeled/unlabeled data sets or manually-
labeled word boundaries but is able to effectively utilize the
visual modality; (2) we propose an audio-dominated cross-

modal fusion Encoder (CMFE), in which multiple cross-modal
fusions occur at different layers; (3) as a result, our AVSR
system achieves a new state-of-the-art performance on the
MISP2021-AVSR corpus without using extra training data and
complex front-ends and back-ends.

II. PROPOSED TECHNIQUES

A. Overall Training Framework
As illustrated in Fig. 1, our AVSR system is trained in two

stages: uni-modal pre-training and multi-modal fine-tuning.
In the first stage, we pre-train a hybrid audio-only ASR
CTC/Attention model [31] based on standard end-to-end ASR
training as shown in the rightmost branch of Fig. 1. For the
video modality as shown in the leftmost branch of Fig. 1,
we explore a correlation between lip shapes and subword
units as described in Section II-B to pre-train the video-only
model. Then we initialize and fine-tune the audio-visual fusion
model, as shown in the middle branch of Fig. 1, after the
two unit-modal networks have converged. In Fig. 1 the audio-
visual fusion model integrates the audio branch (blue blocks)
and visual branch (green blocks) with cross-attention blocks
(red blocks). The four dashed-border blocks in the middle
fusion block are initialized by the pre-trained models while
the solid-border blocks are initialized randomly. Both audio-
only and fusion models integrate the CTC decoder with a
transformer-based decoder for joint training and decoding. The
loss function can be formulated as a linear combination of the
logarithm of the CTC and attention posterior probabilities as
shown below:

LMTL = λ logPctc (Y | X) + (1− λ) logPatt (Y | X) (1)

where X = [x1, · · · , xT ] and Y = [y1, · · · , yL] denote the
encoder output and the target sequences, respectively. T and
L denote their lengths and λ is the weight factor between the
CTC loss and the attention cross entropy (CE) loss.

B. Visual Pre-training by Correlating Lip Shapes with Syllable
Units in Mandarin

In previous studies, some researchers applied the cold fusion
method that freezes the pre-trained visual-only model and



directly combines visual embedding with audio embedding.
Others commonly pre-trained the visual frontend on the
isolated word classification task and fine-tuned it with the
fusion model. Compared to these techniques, our visual pre-
training method correlates lip shapes with frame-level syllabic
sequences generated by a GMM-HMM. It offers explicit
boundaries to establish a direct frame-level mapping from lip
shapes to acoustic subwords and does not need extra data sets
or manually-labeled word boundaries.
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Fig. 2. Cross-modal fusion encoder.

Specifically, we utilize Dacidian Dictionary [32] as basic
pronunciations to map Chinese characters to Pinyin-based
syllables with tones. Then we follow the Kaldi AIShell recipe
to train a triphone GMM-HMM model on far-field audio.
Next, an HMM-based Viterbi forced alignment is applied to
obtain the frame-level state boundaries of the clustered HMM
states. As shown on the leftmost branch of Fig. 1, the pre-
trained video-only model consists of a conv3d+resnet18 block,
an up-sampling block and a 3-layer conformer block. The
conv3d+resnet18 block has the same architecture as [33]. Due
to the mismatch in sampling rate between the video frames
(25fps) and alignments (100fps), two deconvolution layers are
adopted to up-sample video embedding by four times. We
avoid sub-sampling the tied-triphone state alignments because
it could destroy a complete HMM transition. Moreover, in
video recordings, a sampling process for continuous lip move-
ment could be considered as a naturally masked operation that
drops extra visual information between two frames. The up-
sampling operation is intended to reconstruct dropped video
frames, which helps explore potential temporal associations
between two consecutive video frames.

We pre-train the video-only model using the frame-level
clustered HMM state boundaries obtained in the forced align-

ment process described earlier. A CE criterion LCE between
the output prediction posterior P (Y | X) and the ground truth
posterior of state PGT is computed as follows:

LCE = −
T−1∑
t=0

PGT
t logP (yt | X) (2)

where T is the length of the ground truth and yt is the posterior
probability of corresponding HMM state classification on the
tth frame.

C. Cross-Modal Fusion Encoder

Attention-based fusion has shown its advantages in recent
studies [18], [34]. Unlike direct concatenation, attention-based
fusion is not constrained to frame rate discrepancies and audio-
visual asynchrony. Most attention-based fusion network fol-
lows a symmetric dual-branch structure without considering a
modality priority. Within the two-stream framework as shown
in Fig. 1, the pre-trained audio/visual branches are already
able to extract uni-modal representations at the beginning of
the fusion stage, so more learning parameters are consid-
ered for modal fusion rather than uni-modal representation
learning. Since speech contains more linguistic and semantic
information, we reduce the depth of the visual branch, and
more parameters are used for multiple modal cross-attention in
different layers to make full use of modality complementarity.
As a result, we degenerate the classical dual-branch structure
into the audio-dominate cross-modal fusion encoder (CMFE).

As shown in Fig. 2, the backbone of the CMFE is composed
of N early fusion layers and M late fusion layers with
N + M = 12 and N ∈ [1, 2, 3]. Compared to conven-
tional symmetric dual-branch structures, only the early fusion
layer includes a conformer block in the visual branch in
our fusion model. In each fusion layer, one cross-attention
block is inner/outer inserted into the conformer of the audio
branch. Following the design of the decoder block of vanilla
transformer, inner insertion means inserting the cross-attention
between the self-attention block and the convolution block of
the conformer block. Outer insertion means inserting a cross-
attention layer in the front of the conformer block, which
does not break the structure of a complete conformer block.
For the nth early fusion layer, video embeddings produced
by the conformer block Xn

V are considered as a query (Q)
to conduct cross-attention operation with audio embedding
Xn

A as a key (K) and a value (V) in the same layer. We
consider the visual modality as the query, intended to use its
robustness against acoustic signal corruption, to match target
the audio components in noises. After the nth fusion layer, all
video embedding elements from each early fusion layer are
concatenated over the channel dimension and projected into a
512-dimension overall visual memory XO

V for late fusion, as
formulated in the following:

XO
V = FC(Concat(X1

V , · · · , XN
V )) (3)

Motivated by the decoder architecture of the vanilla trans-
former, the same overall visual memory is directly integrated



TABLE I
COMPARISON OF DIFFERENT PRE-TRAINING METHODS USING TWO

STREAMS. ISOLATED DENOTES ISOLATED WORD RECOGNITION AND
CONTINUOUS MEANS CONTINUOUS LIPREADING RECOGNITION.

Model Pre-training Method Unit(number) CER(in %)
A0 No Pre-training \ 35.53

AV1 No Pre-training \ 37.81
AV2 Only Pre-train A \ 34.97
AV3 A&V(Isolated) Word(500) 34.49
AV4 A&V(Isolated) Word(1000) 29.84
AV5 A&V(Continuous) Char(3385) 29.22
AV6 A&V(Continuous) Char(3385) 30.13
AV7 A&V(Proposed) Senone(3168) 28.66
AV8 A&V(Proposed) Senone(6272) 28.90

into the audio in the late fusion layers. This multiple-fusion
design is aimed at reducing forgetfulness and making full use
of modality complementarity in different layers.

III. EXPERIMENTS AND RESULT ANALYSIS

A. Experimental Setup

1) Data Sets and Preprocessing: Most experiments are
evaluated on the updated version of the MISP2021-AVSR
corpus [8], denoted as MISPupdate . For fairness, we ex-
periment with the original version of the MISP2021-AVSR
corpus [21] released in the MISP2021 Challenge, denoted
as MISPoriginal , to compare our proposed system with the
state-of-the-art systems. These two data sets share the same
train set, while MISPupdate adds 10 hours of new data to
the evaluation set to increase the data diversity. We use far-
field audio and far/middle-field videos in the training stage and
evaluate systems’ performance on far-field audio and videos.
Conventional signal processing algorithms, including weighted
prediction error (WPE) [35] and guided source separation
(GSS) [36], are applied on far-field audio for dereverberation
and source separation. Then 80-dimensional filterbank feature
vectors are extracted and utterance normalization is applied.
We adopt speed perturbation, SpecAug [37] and continuous
segments splicing for data augmentation when training ASR
model and only use SpecAug for AVSR. For video, we
follow [8] to obtain gray-scale lip ROI with 88×88 pixels.

2) Implementation Detail: All conformers in Fig. 1 use the
same set of hyper-parameters (nhead = 8, dmodel = 512, dffn
= 2048, CNN kernel = 5). The attention decoder branch of the
audio-only and audio-visual fusion models in Fig. 2 consists of
the 6-layer transformer (nhead = 8, dmodel = 512, dffn = 2048).
We train audio-only and audio-visual fusion models with a
joint CTC loss weight of λ = 0.3. All models are optimized
using Adam with β1 = 0.9, β2 = 0.999 and the learning rate
of 6.0× 10−4. The learning rate is warmed up linearly in the
first 6000 steps and decreases proportionally to the inverse
square root of the step number. A 6-layer transformer-based
language model trained on the transcription of the training set
is applied when decoding with a weight of 0.2.
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Fig. 3. Resnet output embedding projection through t-SNE from AV7 (left)
and AV5 (right)

B. Experiment Results

1) Comparison of Visual Frontend Pre-training: In Table
I, we investigate the performance of different pre-training
methods following the decoupled training framework with far-
field audio and far+middle field videos. Character error rate
(CER) is used for all evaluations. We first train the audio-
only network A0 and audio-visual fusion network AV1 from
scratch, resulting in CERs of 35.53% and 37.81% respec-
tively, which confirms the performance degradation method
in subsection I. We initialize the audio branch of AV2-AV8
with A0 and initialize the visual frontend of AV3-AV8 with
different pre-training methods. For AV1-AV8, they have the
same architecture of visual frontend as shown in the middle of
Fig. 1. A tendency is observed that audio branch initialization
inhibits performance degradation, and audio-visual branch ini-
tialization achieves further performance improvement, which
implies that decoupled training framework effectively miti-
gates variations in learning dynamics between modalities.

Next, we compare different visual branch pre-training meth-
ods with our proposed method. We utilize the conv3d+resnet18
modules pre-trained on isolated word recognition tasks with
LRW [7] and LRW-1000 [38] offered by [39] as the visual
frontend of AV3 and AV4. AV4 performs better than AV3
because LRW-1000 is a Mandarin corpus and the visual
frontend of AV4 can be easily adapted to our evaluation task in
MISP2021 challenge. For AV5 and AV6, their visual frontends
are pre-trained on an end-to-end continuous lipreading recog-
nition task with a CTC loss and an attention loss, respectively.
Specifically, their video-only models have a similar encoder
architecture to the one shown in Fig. 1 on the leftmost branch
but without the up-sampling block. The video-only decoder
of AV6 consists of a 6-layer transformer. As shown in

Table I, the visual front-ends of AV7 and AV8 are pre-trained
on our proposed method. The only difference is the number of
clustered HMM states. AV7 and AV8 perform better than other
pre-training methods in AV3-AV6, and AV7 model trained
with fewer senone units achieves a slightly better CER than
AV8 (28.66% vs. 28.90%). The results show an advantage of
the fine-grained alignment labels that offer frame-level syllable
boundaries to guide visual feature extraction. Moreover, we



TABLE 3
COMPARISON OF TRAINING DATA, FRONTEND AND BACKEND TO SOTA SYSTEMS ON MISPoriginal .

System
Training Data

Frontend Backend Encoder CER(in %)
A V

NIO 3300 hours LRW-1000 WPE+GSS CAE (Seven Stream) 25.07
XIAOMI 3000 hours LRW-1000 WPE+GSS+SPEx+ AV-Encoder (Dual Stream) 27.17
Proposed 500 hours w/o extra data WPE+GSS CMFE (Dual Stream) 24.58

TABLE 2
COMPARISON OF DIFFERENT AUDIO-VISUAL MODAL FUSION STRATEGIES.

Model Fusion Pinsert Nvblock CER(in %)
AV9 TM-CTC Outer 3 28.98
AV10 TM-Seq Outer 3 34.70
AV7 Baseline Outer 3 28.66
AV11 CMFE Outer 3 28.00
AV12 CMFE Outer 2 27.90
AV13 CMFE Outer 1 28.13
AV14 CMFE Inner 3 28.32
AV15 CMFE Inner 2 28.09
AV16 CMFE Inner 1 28.15

use t-distributed Stochastic Neighbor Embedding to visualize
the output embedding from the pre-trained visual frontend
of AV5 and AV7 in Fig 3 and observe that the embedding
projection of AV7 shows a better clustering on syllable units
than AV5. It indicates that using the fine-grained frame-level
syllable labels enables the visual frontend to explore potential
acoustic information from lip movements and contributes to a
better adaptation with the audio stream in the fusion stage.

2) Comparison of Audio-visual Fusion Strategies: The re-
sults of different fusion strategies on MISPupdate are shown
in Table 2. All models are trained following the decoupled
training framework. Pinsert denotes that the cross-attention
block is inner/outer inserted in the conformer block as shown
in Fig. 2. Nvblock is the number of conformer blocks in
the visual branch of the fusion model. TM-CTC [17] and
TM-Seq [17] are two classic attention-based fusion structures
in which audio and visual streams are integrated in the
encoder/decoder respectively. The architecture of the Baseline
is shown in the middle branch of Fig. 1. Compared with
TM-CTC, TM-Seq and Baseline, the proposed CMFE (AV11-
AV16) performs better with multiple fusions in different
layers. And the best model (AV12) achieves an CER of 27.90%
on MISPupdate (more difficult than MISPoriginal with an CER
of 26.21%). We gradually decrease the number of conformer
blocks in the visual branch, and no obvious performance drop
is observed. It indicates that more training parameters can
be used for modality fusion within the decoupled training
framework attributed to visual frontend initialization. Finally,
we compare two methods of inserting cross-attention blocks
into the original conformer layer. Outer insertion (AV11-
AV13) slightly outperforms inner insertion (AV14-AV16) as
it does not break the complete conformer block structure.

3) Overall Comparison with State-of-the-art Systems: In
Table 3 we present an overall comparison of our proposed
system, NIO system [16] and XIAOMI system [22] (the 1st

and 2nd place in MISP2021 Challenge). We compare these
systems in terms of audio-visual training data, frontend, and
backend encoders. For training, NIO and XIAOMI adopted all
far/middle/near-field audio and applied a series of simulation
and augmentation methods to extend the training set to 3300
and 3000 hours, respectively. Both of them initialized their
visual branch on isolated word tasks with extra word-level
data sets, LRW-1000. In comparison, our audio-only model is
trained on a 500-hour data set and we do not use any extra
data to pre-train the visual branch. In terms of frontend and
backend, XIAOMI trained an extra neural signal separator
(SPEx+ [40]) for source separation. NIO had a large-size
backend encoder denoted as CAE to process all original 6-
channel signals, the enhanced channel, and the visual fea-
tures. In contrast, our system is simple yet effective with the
frontend system consisting of GSS and WPE and a dual-
stream backend. We then use the recognizer output voting
error reduction (ROVER) [41] procedure to rescore the output
transcripts of A0, AV7, AV12, AV15 models in Tables I-2. As
a result, our system attains a state-of-the-art CER of 24.58%
and outperforms the NIO system [16] by an absolute CER
reduction of 0.5%. On the more difficult MISPupdate test, our
proposed ROVER system also gives a good CER of 25.96%.

IV. CONCLUSION

In this paper, we decouple one-pass end-to-end AVSR
training into two stages to mitigate modality variations. Fur-
thermore, we propose a visual pre-training framework by
correlating lip shapes with syllables to establish good frame-
level syllable boundaries from lip shapes. Moreover, a novel
CMFE block is introduced to model multiple cross-modal
attentions in the fusion stage and make full use of multi-
modal complementarities. Compared to the currently top-
performance systems in MISP2021-AVSP Challenge, our pro-
posed system is simple yet effective and achieves a new state-
of-the-art performance without using extra training data and
complex front-ends and back-ends. In the future, more types
of subword units, such as visemes and phonemes, will be
explored to improve correlation-based visual pre-training and
cross-modal fusion encoder.
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