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Abstract—In this study, we present a novel end-to-end ap-
proach based on the encoder-decoder framework with the atten-
tion mechanism for online handwritten mathematical expression
recognition (OHMER). First, the input two-dimensional ink
trajectory information of handwritten expression is encoded via
the gated recurrent unit based recurrent neural network (GRU-
RNN). Then the decoder is also implemented by the GRU-
RNN with a coverage-based attention model. The proposed
approach can simultaneously accomplish the symbol recognition
and structural analysis to output a character sequence in LaTeX
format. Validated on the CROHME 2014 competition task, our
approach significantly outperforms the state-of-the-art with an
expression recognition accuracy of 52.43% by only using the
official training dataset. Furthermore, the alignments between
the input trajectories of handwritten expressions and the output
LaTeX sequences are visualized by the attention mechanism to
show the effectiveness of the proposed method.

Keywords-Online Handwritten Mathematical Expression
Recognition, Encoder-Decoder, Gated Recurrent Unit, Attention

I. INTRODUCTION

Mathematical expressions are indispensable for describing

problems and theories in math, physics and many other fields.

With the rapid development of pen-based interfaces and tactile

devices, people are allowed to write mathematical expressions

on mobile devices using handwriting. However, the automatic

recognition of these handwritten mathematical expressions

is quite different from the traditional character recognition

problems with more challenges [1]–[3], e.g., the complicated

geometric structures, enormous ambiguities in handwritten

input and the strong dependency on contextual information.

This study focuses on the online handwritten mathematical ex-

pression recognition (OHMER), which attracts broad attention

such as the Competition on Recognition of Online Handwritten

Mathematical Expressions (CROHME) [4].

OHMER consists of two major problems [5], [6], namely

symbol recognition and structural analysis, which can be

solved sequentially or globally. In the sequential solutions

[7], [8], the errors of symbol recognition and segmentation

are subsequently inherited by the structural analysis. Con-

sequently, the global solutions [9], [10] can well address

this problem, which are computationally expensive as the

probabilities for segmentation composed of strokes are expo-

nentially expanded. Many approaches for structural analysis

of mathematical expressions have been investigated, including

expression trees [11], two-dimensional hidden Markov model

(HMM) [12] and others [13]–[15]. Among these, the grammar-

based methods [16], [17] are widely used in OHMER systems

[8]–[10]. These grammars are constructed using extensive

prior knowledge with the corresponding parsing algorithms.

Overall, both conventional sequential and global approaches

have common limitations: 1) the challenging symbol segmen-

tation should be explicitly designed; 2) structural analysis

requires the priori knowledge or rules; 3) the computational

complexity of parsing algorithms increases exponentially with

the size of the predefined grammar.

To address these problems, in this paper, we propose a

novel end-to-end approach using the attention based encoder-

decoder model with recurrent neural networks (RNNs) [18]

for OHMER. First, the input two-dimensional ink trajectory

information of handwritten expression is encoded to the high-

level representations via the stack of bi-directional gated

recurrent unit based recurrent neural network (GRU-RNN).

Then the decoder is implemented by a unidirectional GRU-

RNN with a coverage-based attention model [19]–[21]. The

attention mechanism built into the decoder scans the entire in-

put sequence and chooses the most relevant region to describe

a segmented symbol or implicit spatial operator. Inherently

unlike traditional approaches, our model optimizes symbol

segmentation automatically through its attention mechanism,

and structural analysis does not rely on a predefined grammar.

Moreover, the encoder and the decoder are jointly trained.

The proposed encoder-decoder architecture [22] can make

the symbol segmentation, symbol recognition, and structural

analysis unified in one data-driven framework to output a

character sequence in LaTeX format [23]. Validated on the

CROHME 2014 competition task, our approach significantly

outperforms the state-of-the-art with an expression recognition

accuracy of 52.43% by only using the official training dataset.

Furthermore, the alignments between the input trajectories of

handwritten expressions and the output LaTeX sequences are

visualized by the attention mechanism to show the effective-

ness of the proposed method.

Our proposed approach is related to our previous work [24]

and a recent work [25] with the new contributions as: 1) the
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1. Handwritten input 

2. Encoder

3. Decoder with attention

4. LaTeX sequence

Fig. 1. The overall architecture of attention based encoder-decoder model.

encoder in this work can fully utilize the online trajectory

information via the GRU-RNN while the encoder in [24]

using convolutional neural network (CNN) can only work

for the offline image as input; 2) different from [25], the

newly added coverage-based attention model is crucial to the

recognition performance and its visualization can well explain

the effectiveness of the proposed method.

The remainder of the paper is organized as follows. In Sec-

tion II, the details of the proposed approach are introduced. In

Section III, the experimental results and analysis are reported.

Finally the conclusion is given in Section IV.

II. THE PROPOSED APPROACH

In this section, we elaborate the proposed end-to-end frame-

work, namely generating an underlying LaTeX sequence from

a sequence of online handwritten trajectory points, as illus-

trated in Fig. 1. First, the preprocessing is applied to the

original trajectory points to extract the input feature vector.

Then, the encoder and decoder are well designed using the

GRU-RNNs [26]. The encoder is a stack of bidirectional

GRUs while the decoder combines a unidirectional GRU and

an attention mechanism into the recurrent sequence genera-

tor. The attention mechanism can potentially well learn the

alignment between the input trajectory and the output LaTeX

sequence. For example in Fig. 1, the green, blue, and purple

rectangles denote three symbols with the red color representing

the attention probabilities of each handwritten symbol.

A. Preprocessing

Suppose the input handwritten mathematical expression

consists of a sequence of trajectory points with a variable-

length N :

{[x1, y1, s1] , [x2, y2, s2] , . . . , [xN , yN , sN ]} (1)

where xi and yi are the xy-coordinates of the pen movements

and si indicates which stroke the ith point belongs to.

To address the issue of non-uniform sampling by different

writing speed and the size variations of the coordinates on

different potable devices, the interpolation and normalization

to the original trajectory points are first conducted according

to [27]. Then we extract an 8-dimensional feature vector for

each point:
[
xi, yi,Δxi,Δyi,Δ

2xi,Δ
2yi, δ(si = si+1), δ(si �= si+1)

]

(2)

where Δxi = xi+1−xi, Δyi = yi+1−yi, Δ
2xi = xi+2−xi,

Δ2yi = yi+2 − yi and δ(·) = 1 when the condition is true

or zero otherwise. The last two terms are flags which indicate

the status of the pen, i.e., [1, 0] and [0, 1] are pen-down and

pen-up, respectively. A handwritten mathematical expression

is actually composed of several strokes. So fully utilizing the

stroke segmentation information plays an important role in

constructing an effective recognizer. For convenience, in the

following sections, we use X = (x1, x2, . . . , xN ) to denote

the input sequence of the encoder, where xi ∈ R
d (d = 8).

B. Encoder

Given the input sequence (x1, x2, . . . , xN ), a simple RNN

can be adopted as an encoder to compute the corresponding

sequence of hidden state (h1, h2, . . . , hN ):

ht = tanh (Wxhxt +Whhht−1) (3)

where Wxh is the connection weight matrix of the network

between input layer and hidden layer, and Whh is the weight

matrix of recurrent connections in a hidden layer. In principle,

the recurrent connections can make RNN map from the

entire history of previous inputs to each output. However, in

practice, a simple RNN is difficult to train properly due to the

problems of the vanishing gradient and the exploding gradient

as described in [28], [29].

Therefore, in this study, we utilize GRU as an improved

version of simple RNN which can alleviate the vanishing and

exploding gradient problem. The encoder GRU hidden state

ht is computed as follows:

zt = σ(Wxzxt +Uhzht−1) (4)

rt = σ(Wxrxt +Uhrht−1) (5)

h̃t = tanh(Wxhxt +Urh(rt ⊗ ht−1)) (6)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t (7)

where σ is the sigmoid function and ⊗ is an element-wise

multiplication operator. zt, rt and h̃t are the update gate, reset

gate and candidate activation, respectively. Wxz , Wxr, Wxh,

Uhz , Uhr and Urh are related weight matrices.

Nevertheless, unidirectional GRU cannot utilize the future

context. To address this issue, we pass the input vectors

through two GRU layers running in opposite directions and
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concatenate their hidden state vectors. This bidirectional GRU

can use both past and future information. To obtain a better

representation for the decoder to attend, we stack multiple

layers of GRU on top of each other as the encoder. However,

as the depth of encoder increases, the high-level representation

might contain much redundant information. So we add pooling

over time in high-level GRU layers as illustrated by Fig. 1.

The pooling operation not only helps accelerate the training

process, but also improves the recognition performance as the

decoder is easier to attend with a fewer number of outputs of

encoder.

C. Decoder equipped with attention mechanism

As shown in Fig. 1, the decoder generates a corresponding

LaTeX sequence of the input handwritten mathematical ex-

pression. The output sequence Y is encoded as a sequence of

one-shot vectors.

Y = {y1, . . . ,yC} , yi ∈ R
K (8)

where K is the number of total symbols/words in the vocabu-

lary and C is the length of a LaTeX sequence. Meanwhile, the

bi-directional GRU encoder produces an annotation sequence

A with a length L. If there is no pooling in the bi-directional

GRU encoder, L = N . Each of these annotations is a D-

dimensional vector:

A = {a1, . . . ,aL} , ai ∈ R
D (9)

Note that, both the length of annotation sequence L and

the length of LaTeX sequence C are not fixed. To address

the learning problem of variable-length annotation sequences

and associate them with variable-length output sequences,

we attempt to compute an intermediate fixed-size vector ct,
which will be described later. Given the context vector ct, we

utilize unidirectional GRU to produce the LaTeX sequences

symbol by symbol. The probability of each predicted symbol

is calculated as:

p(yt|X,yt−1) = g (Wo(Eyt−1 +Wsst +Wcct)) (10)

where g denotes a softmax activation function over all the

symbols in the vocabulary. st is the current hidden state of

the GRU decoder and yt−1 represents the previous target

symbol. Wo ∈ R
K×m, Ws ∈ R

m×n, Wc ∈ R
m×D, and E

denotes the embedding matrix. m and n are the dimensions of

embedding and GRU decoder. The GRU decoder also takes the

previous target symbol yt−1 and the context vector ct as input,

and employs a single unidirectional GRU layer to calculate the

hidden state st:

z′t = σ(WyzEyt−1 +Uszst−1 +Cczct) (11)

r′t = σ(WyrEyt−1 +Usrst−1 +Ccrct) (12)

s̃t = tanh(WysEyt−1 +Urs(r
′
t ⊗ st−1) +Ccsct) (13)

st = (1− z′t)⊗ st−1 + z′t ⊗ s̃t (14)

where z′t, r′t and s̃t are the update gate, reset gate and

candidate activation, respectively. Wyz , Wyr, Wys, Usz ,

Usr, Urs, Ccz , Ccr and Ccs are related weight matrices.

Intuitively, for each predicted symbol from the decoder, not

the entire input sequence is useful. Only a subset of adjacent

trajectory points should mainly contribute to the computation

of context vector ct at each time step t. Therefore, the decoder

can adopt an attention mechanism to link to the related part

of input sequence and then assign a higher weight to the

corresponding annotation vector ai. Here, we parameterize

the attention model as a multi-layer perceptron (MLP) that

is jointly trained with the encoder and the decoder:

eti = νT
att tanh(Wattst−1 +Uattai) (15)

αti =
exp(eti)∑L

k=1 exp(etk)
(16)

Let n
′

denote the attention dimension. Then νatt ∈ R
n
′
,

Watt ∈ R
n
′×n and Ua ∈ R

n
′×D. With the weights αti,

the context vector ct is calculated as:

ct =
∑L

i
αtiai (17)

The attention probability αti denotes the alignment between

the target symbol and a local region of input sequence. It can

also be considered as a regularization parameter for the bi-

directional GRU encoder because the attention helps diminish

the gradient back-propagated from the decoder.

D. Coverage based attention model

However, there is one problem for the conventional attention

mechanism in (15), namely the lack of coverage [30]. Cov-

erage represents overall alignment information. An attention

model lacking coverage is not aware whether a part of input

expression has been translated or not. Misalignment will lead

to over-translating or under-translating. Over-translating means

that some parts of the input sequence have been translated

twice or more, while under-translating implies that some

parts have never been translated. To address this problem,

we append a coverage vector to the computation of attention

in (15). The coverage vector aims at providing alignment

information. Different from [31], we compute the coverage

vector based on the sum of all past attention probabilities βt,

which can describe the alignment history:

βt =
∑t−1

l
αl (18)

F = Q ∗ βt (19)

eti = νT
att tanh(Wattst−1 +Uattai +Uf fi) (20)

where αl is the attention probability vector at time step l
and fi denotes the ith coverage vector of F. βt is initialized

as a zero vector. The coverage vector is produced through a

convolutional layer because we believe the coverage vector

of annotation ai should also be associated with its adjacent

attention probabilities.

The coverage vector is expected to adjust the future atten-

tion. More specifically, trajectory points in the input sequence

already significantly contributed to the generation of target

symbols should be assigned with lower attention probabilities
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Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 13:53:50 UTC from IEEE Xplore.  Restrictions apply. 



in the following decoding phases. On the contrary, trajectory

points with less contributions should be assigned with higher

attention probabilities. Consequently, the decoding process is

finished only when the entire input sequence has contributed

and the problems of over-translating or under-translating can

be alleviated.

III. EXPERIMENTS

The experiments are conducted on CROHME 2014 compe-

tition dataset. The training set consists of 8836 handwritten

mathematical expressions (about 86000 symbols) while the

test set includes 986 expressions (about 6000 symbols). There

are totally 101 maths symbol classes. None of the expressions

in the test set is seen in the training set. To be fairly

comparable, we also used the CROHME 2013 test set as a

validation set in the training stage, just like other participants

of CROHME 2014 competition.

The training objective of our model is to maximize the

predicted symbol probability as shown in (10) and we use

cross-entropy (CE) as the criterion. The encoder consists of 4

layers of bi-directional GRUs. Each layer has 250 forward

and 250 backward GRU units. The pooling is applied to

the top 2 GRU layers over time. Accordingly, the encoder

reduces the input sequence length by the factor of 4. The

decoder is a single layer with 256 forward GRU units. The

embedding dimension m and GRU decoder dimension n
are set to 256. The attention dimension n′ and annotation

dimension D are set to 500. We utilize the AdaDelta algorithm

[32] with gradient clipping for optimization. The AdaDelta

hyperparameters are set as ρ = 0.95, ε = 10−6. The early-

stopping of training procedure is determined by word error rate

(WER) [33] of validation set. We use the weight noise [34] as

the regularization. The training is first finished without weight

noise, we then anneal the best model in terms of WER by

restarting the training with weight noise.

In the decoding stage, we aim to generate a most likely

LaTeX sequence given the input sequence. The beam search

algorithm [35] is employed to complete the decoding process.

At each time step, we maintain a set of 10 partial hypotheses.

We also adopt the ensemble method [36] to improve the

performance of our neural network model. We first train 5

models on the same training set but with different initialized

parameters and then average their prediction probabilities on

the generated symbol during the beam search process.

A. Recognition performance

The comparison among the proposed approach (systems P1,

P2, P3) and others on CROHME 2014 test set is listed in

Table I. Systems I to VII were submitted systems to CROHME

2014 competition. Note that system III is not given for a fair

comparison as it used additional training data not provided

officially. The details of these systems can be seen in [4].

System I acquired an expression rate (ExpRate) of 37.22% and

was awarded the first place on CROHME 2014 competition

using the official training data. It should be indicated that there

TABLE I
CORRECT EXPRESSION RECOGNITION RATES (IN %) OF DIFFERENT

SYSTEMS ON CROHME 2014 TEST SET.

System Correct(%) ≤ 1(%) ≤ 2(%) ≤ 3(%)
I 37.22 44.22 47.26 50.20
II 15.01 22.31 26.57 27.69
IV 18.97 28.19 32.35 33.37
V 18.97 26.37 30.83 32.96
VI 25.66 33.16 35.90 37.32
VII 26.06 33.87 38.54 39.96
P1 42.49 57.91 60.45 61.56
P2 46.86 61.87 65.82 66.63
P3 52.43 68.05 71.50 72.31

horizontal vertical

superscript subscript

inside

Fig. 2. The learning of five spatial relationships (horizontal, vertical,
subscript, superscript and inside) through attention visualization.

is a large performance gap between the ExpRate of the first

place and the second place.

System P1 and P2 are two of our proposed systems with-

out/with coverage based attention model, respectively. System

P3 is our best ensemble system with 5 models. It is clear

that system P1 even without coverage model can achieve

an ExpRate of 42.49%, which significantly outperforms the

best submitted system to CROHME 2014 competition with

an absolute gain of about 5%. By using the coverage model,

an absolute gain of 4% could be obtained from system P1 to

P2. The best system P3 yields an ExpRate of 52.43%, which

should be the best published result on CROHME 2014 test

set, to the best of our knowledge.

A mathematical expression is considered to be correctly

recognized only when the generated LaTeX sequence matches

ground truth. Additionally, Table I also shows the expression

recognition accuracies with one, two and three errors per

expression, represented by (≤ 1), (≤ 2) and (≤ 3). The

performance gap between correct and error (≤ 1) shows

that the corresponding systems still have a large room to be

improved. Meanwhile, the differences between error (≤ 2) and

error (≤ 3) show that it is difficult to improve the accuracy by

incorporating a single correction when more errors happen.
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Fig. 3. Attention visualization for an example of a handwriting mathematical
expression with the LaTeX ground truth “ e ∧ { x } + 1 8 x + 1 2 ”.

B. Attention visualization

In this section, we show through attention visualization how

the proposed model is able to analyse the two-dimensional

structure grammar and perform symbol segmentation implic-

itly. We draw the trajectory of input handwritten mathematical

expression in a 2-D image to visualize attention. We use the

red color to describe the attention probabilities, namely the

higher attention probabilities with the lighter color and the

lower attention probabilities with the darker color.

In the two-dimensional grammar of mathematical expres-

sions, there are mainly five kinds of spatial relationship be-

tween maths symbols, including horizontal, vertical, subscript,

superscript and inside relationships. Correctly recognizing

these five spatial relationships is the key to analyse the two-

dimensional grammar. As shown in Fig. 2, the horizontal and

vertical relationships are easy to learn by focusing on the

middle operator. When dealing with superscripts, the decoder

precisely pays attention to the end of base symbols and the

start of superscript symbols. It does make sense because

trajectory points in the start of superscript symbols are on the

upper-right of trajectory points in the end of base symbols,

describing the upper-right direction. Similarly, for subscripts,

the ending points of base symbols and the starting points

of superscript symbols can also describe the bottom-right

direction. As for the inside relationships, the decoder attends

to the bounding symbols.

More specifically, in Fig. 3, we take the expression ex +
18x+12 as a correctly recognized example. We show that how

our model learns to translate this handwritten mathematical

expression from a sequence of trajectory points into a LaTeX

sequence “ e ∧ { x } + 1 8 x + 1 2 ” step by step. When

encountering basic math symbols like “e”, “x”, “+”, “1”, “2”

and “8”, the attention model well generates the alignment

strongly corresponding to the human intuition. When encoun-

tering a spatial relationship in ex, the attention model correctly

Stroke 1 Stroke 2 Stroke 3

Stroke 4 Stroke 5

Ground truth: g _ { a b }
Predicted LaTeX: g ^ { - a b }

Fig. 4. Analysis of an incorrectly recognized example of handwritten
mathematical expression due to the over-translating problem where “∧” is
over-translated.

Stroke 1 Stroke 2 Stroke 3

Stroke 4 Stroke 5 Stroke 6

Stroke 7 Stroke 8

Ground truth: - \frac { 1 5 \pi } { 8 }

Predicted LaTeX: \frac { 1 5 \pi } { 8 }

Fig. 5. Analysis of an incorrectly recognized example of handwritten
mathematical expression due to the under-translating problem where the minus
sign “–” is under-translated.

distinguishes the upper-right direction and then produces the

symbol “∧”. More interestingly, immediately after detecting

the superscript spatial relationship, the decoder successfully

generates a pair of braces “{}”, which are used to compose

the exponent grammar in LaTeX. Finally, the decoder attends

both the end and the start of the entire input sequence and

generates an end-of-sentence (eos) mark.

C. Error Analysis

In Fig. 4 and Fig. 5, we show two typical incorrectly

recognized examples of handwritten mathematical expressions,

due to over-translating and under-translating, respectively. The

stroke 2 in Fig. 4 is an inserted stroke, which is actually the

end of symbol “g” but split into another stroke by the writer.

Accordingly, our model over-translates the input sequence and

recognizes the stroke 2 as a minus sign “–”. And the spatial

relationship subscript is mistaken as the superscript. In Fig. 5,

the first symbol of formula LaTeX string, namely the minus

sign “–”, is missing, which corresponds to the last stroke of the

handwritten example. In general, we should write the minus

sign as the first stroke. Consequently, this inverse stroke leads

to the under-translating problem.

IV. CONCLUSION

In this study we introduce an encoder-decoder with cov-

erage based attention model to recognize online handwritten

mathematical expressions. The proposed approach can fully

utilize the online trajectory information via GRU-RNN based

encoder. And the coverage model is quite effective for atten-

tion by using the alignment history information. We achieve
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promising recognition results on CROHME 2014 competition.

We show from experiment results that our model is capable of

performing symbol segmentation automatically and learning to

grasp a maths grammar without priori knowledge. Also, we

demonstrate through attention visualization that the learned

alignments by attention model well correspond to human

intuition. As for the future work, we aim to improve our

approach to reduce the over-translating and under-translating

errors.
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