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Abstract—We present a pre-processing speech enhancement
network architecture for noise-robust speech recognition by
learning progressive multiple targets (PMTs). PMTs are rep-
resented by a series of progressive ratio masks (PRMs) and
progressively enhanced log-power spectra (PELPS) targets at
various layers based on different signal-to-noise-ratios (SNRs), at-
tempting to make a tradeoff between reduced background noises
and increased speech distortions. As a PMT implementation, long
short-term memory (LSTM) is adopted at each network layer
to progressively learn intermediate dual targets of both PRM
and PELPS. Experiments on the CHiME-4 automatic speech
recognition (ASR) task, when compared to unprocessed speech
using multi-condition trained LSTM-based acoustic models with-
out retraining, show that PRM-only as the learning target can
achieve a relative word error rate (WER) reduction of 6.32%
(from 27.68 % to 25.93%) averaging over the RealData evaluation
set, while conventional ideal ration masks severely degrade the
ASR performance. Moreover, the proposed LSTM-based PMT
network, with the best configuration, outperforms the PRM-only
model, with a relative WER reduction of 13.31% (further down
to 22.48%) averaging over the same test set.

Index Terms: progressive ratio mask, progressively en-
hanced log-power spectra, progressive multi-targets, deep
learning based speech enhancement, robust speech recognition

I. INTRODUCTION

Recently, hands-free speech interaction with smart phones
and artificial intelligence speakers equipped with automatic
speech recognition (ASR) capabilities is becoming an essential
voice input mode, due to the rapid development of ASR
technology [1]-[3]. However, speech signal, corrupted by
reverberation and background noise, may degrade ASR system
performances, especially in realistic adverse environments
[4]. Accordingly, single-channel and multi-channel speech
enhancement methods to improve the robustness of ASR
systems has attracted quite a bit of research attentions [5]-
[9].

Single-channel speech enhancement, especially based on
deep learning [9]-[16], has been studied by many researchers
to improve ASR performance, but the acoustic models (AMs)
under multi-condition training are also often required to be
retrained. In [17], a bidirectional long short-term memory
(BLSTM) neural network was used to accurately predict
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ideal ratio mask (IRM) for speech enhancement, denoted as
BLSTM-IRM. And the experiments show that BLSTM-IRM
was not effective without AM retraining because there exists
mismatch between enhanced speech and the training data
distributions represented by AMs. Therefore, it is quite chal-
lenging for pre-processing approaches to yield performance
gains on AMs using multi-condition training without retraining
[18]. In this paper we focus our attention on single-channel
speech enhancement with a set of progressively learned mul-
tiple targets to ease this difficulty.

Based on the above analysis, conventional deep learning
based speech enhancement methods usually directly learns
the clean spectral features or IRM, given the noisy spectral
features, but it is very hard for neural networks to learn
this non-linear relationship well especially under mismatched
low signal-to-noise ratio (SNR) Conditions. So, in [19]-[21],
SNR-based progressive learning for speech enhancement was
proposed, which divides a whole network into stacking blocks
and forces them to gradually learn less-noisy spectral features
in a progressive manner until it eventually reaches the clean
spectral features. Experiments show that it can improve the
performance compared to conventional deep learning models
in terms of speech enhancement metrics.

In this study, we propose a novel pre-processing neural
network by designing progressive multi-targets (PMTs) based
on SNRs to improve ASR performance without AM retrain-
ing, which is comprehensively extended from the previous
work [19] with new contributions listed as follows: (1) first,
a new learning target, namely the progressive ratio mask
(PRM), is proposed; (2) the pre-processing neural network
with PMTs aims to learn a series of dual targets of both
PRM and progressively enhanced log-power spectra (PELPS);
and (3) we evaluate on ASR performance rather than the
conventional speech enhancement metrics. The tradeoff be-
tween background noise reductions and introduced nonlinear
distortions can be controlled conveniently by PMTs at different
target layers. As an implementation of PMT network, LSTM
is adopted at each layer to progressively learn one pair of
intermediate targets of PRM and PELPS. The whole network
can be optimized in a multi-task learning manner. Experiments
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Fig. 1. An illustration of progressive multi-targets network.

on the CHiME-4 ASR task with RealData testing sets show
that, using the same LSTM architecture, the PRM as the
learning target can achieve good word error rate (WER)
reductions when compared to unprocessed noisy speech in
the setting of multi-condition trained AMs without retraining,
with a relative WER reduction of 6.32% averaging over the
CHIiME-4 RealData evaluation set, while the conventional
IRM severely degrades the ASR performance in this case.
Moreover, the proposed LSTM-based PMT network with the
best setting significantly outperforms the LSTM-based single
PRM-only model, with a relative WER reduction of 13.31%
averaging over the same test set.

II. PROGRESSIVE MULTI-TARGET NEURAL NETWORK

A block diagram of the proposed progressive multi-targets
network is shown in Figure 1. The input of the whole network
is noisy LPS (NLPS) and only the current frame is used
without frame expansion. The whole diagram can be divided
into two branches with black solid lines and red solid lines.
The branch with black solid lines shows the progressive
learning network proposed in [19], [20], and only the PELPS
is used. The branch with red solid lines demonstrates our
proposed progressive ratio masks. The whole PMT network
is divided into successively stacking blocks with one LSTM
layer and one fully connected layer via dual-target learning per
block. The fully connected layer in every block is also referred
to as a target layer, which is designed to learn intermediate
speech targets with a higher SNR than the targets of previous
target layers. Each target layer has dual targets, namely PELPS
and PRM.

A. Progressive ratio mask

In [22]-[24], the IRM-based speech enhancement is pro-
posed, and has shown its effectiveness in terms of speech en-
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hancement metrics. However, in [17], the BLSTM-IRM based
speech enhancement failed in improving ASR performance
without AM retraining, and the reason is that there exists
mismatch between enhanced speech distribution and the train-
ing data distribution represented by AMs. In [20], the authors
also demonstrate that it is hard for the deep-learning-based
regression model to directly learn the relationship between the
noisy LPS features and clean LPS features. In this study, we
propose the PRM target to make a tradeoff between the noise
reduction and speech distortion. And the PRM is defined as

S(t, f) + Nr(t, f)
S(t, f) + Ni(t, f)

where S(t, f) represents the power spectrum of the speech
signal at the time-frequency (T-F) unit (¢, f), Nr(¢t, f) and
Ni(t, f) represent the power spectrum of the noise in one PRM
target and input signals at the T-F unit (¢, f), respectively.
When the numerator of Eq. (1) becomes the power spectrum
of the clean speech signal, Nt(t, f) is zero and 2PRM(¢, f)
is regressed to the traditional IRM z™®M(¢, f). We should
emphasize that PRM can be used not only in our PMT network
illustrated by Figure 1, but also as a single learning target just
as the IRM using the conventional deep architectures. More
details will be discussed in Section III-C.

ZPRM(t,f) — (1)

B. Progressive multi-target learning

In speech enhancement domain, multi-task learning methods
such as combining spectrum mapping and mask-based tasks
together not only reduce the generalization error but also ex-
tract complementary information from multiple tasks. In [25],
the authors demonstrate that combining spectrum mapping and
mask-based tasks together achieves further improvements in
speech enhancement quality, especially in speech intelligibility
measures. Therefore we propose the progressive multi-target
learning network as illustrated in Figure 1. Every block
functions as a sequence learning component to estimate its
targets, while the input and the estimations of all previous
intermediate targets are spliced together and fed to the LSTM
layer in the block, forming the similar structure to DenseNet
[26]. Each target layer defines two equally important targets,
namely PELPS and PRM.

To implement multi-task learning in PMT network, each
target layer is designed to predict both PELPS and PRM
targets. The multi-task error between the output of target layer
k (1 £ k < K) and its ground-truth label is

Bur(k) = Y [(E™S(k,t, f) = 25k, £))?
t.f
+('7:'PRI\/I(]€7 ta f) - ZPRM(ka t? f))z] ) (2)

where ZPELPS (Lt f) and 2PELPS(k ¢, f) are predicted and
ground-truth PELPS features of the k" target layer, while
ZPRM(E . f) and 2PRM(k, ¢, f) are predicted and ground-truth
PRM features of the k™ target layer. Both 2PELPS(k ¢, f) and
SPRM(E ¢ f) are nonlinear functions of PELPS and PRM in
preceding target layers. zPELPS (K ¢, f) and 2PRM (K, ¢, f) can be
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easily calculated with a predefined SNR gain of target layer
k. K is the number of target layers. Please note that PELPS
and PRM of target layer K correspond to clean LPS (CLPS)
features and IRM, respectively. The errors of all target layers
are computed in the mean squared error (MSE) sense, and
added together to optimize the trainable parameters.

In the enhancement stage, every target layer has two outputs,
predicting the corresponding PELPS and PRM. We can use
either of them as the preprocessed result for ASR system.
To combine these two targets for further improving ASR
performance, an ensemble method via a simple average is
adopted:

éFusion(k’ t, f) _

% [2PELPS(]€, t, .f) + log 2PRM(k, t, f) + .TLPS(t7 f)] (3)
where 2Fusion(k ¢, f) is the fusion result of two outputs at T-F
unit (¢, f) in the target layer k, 2"S(¢, f) is the input noisy
LPS feature at T-F unit (¢, f). When using our PMT network
as a preprocessor for a specific ASR system, one critical issue
is how to select the optimal target from all target K layers.
One simple way is to determine it in terms of a lowest WER
on a development set and apply it to the test/evaluation set.

III. EXPERIMENTS AND RESULT ANALYSIS

A. Speech enhancement systems

CHiME-4 noises (BUS, CAF, PED and STR) [27] were
chosen as the noise database to match the training and test
conditions for our AM. Clean speech was derived from the
WSJO corpus with 7138 utterances (about 12 hours of reading
style speech) by 83 speakers, denoted as SI-84 training set.
Clean utterances were corrupted with the above mentioned
CHiME-4 noises at three SNR levels (-5dB, OdB and 5dB) to
build our training set by the data simulation method [27].

Speech waveform was sampled at 16 kHz, and the corre-
sponding frame length was set to 512 samples (or 32 msec)
with a frame shift of 256 samples. A short-time Fourier
analysis was used to compute the DFT of each overlapping
windowed frame. Then the 257-dimensional LPS features nor-
malized by global mean and variance were used to train neural
networks using Microsoft Computational Network Toolkit
(CNTK) [28]. The network, as depicted, is composed of K
stacking blocks, where K is usually 3, 5 or 7, each with a
different design of SNR gains as described in Table II. The
enhancement models were trained using Adam optimizer for
20 epochs.

B. Speech recognition systems

The CHiME-4 challenge baseline AM [27], namely a DNN-
HMM with 7 layers and 2048 neurons per layer, was used
as the multi-condition trained AM without retraining in this
study. The channel-5 noisy training data of CHiME-4 was used
to train the AM while the development and evaluation sets
of 1-channel track of CHiME-4 real data were used in the
recognition stage. The acoustic features to train the AM were
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based on feature-space maximum likelihood linear regression
(fMLLR) transformation, and the AM was optimized by
sequence discriminative training. 3-gram language model was
used and more details of ASR system could refer to [27].

C. Experiments on progressive ratio masks (PRMs)

Table I shows that comparison of different SE models on the
development and test sets of RealData. For the first block from
the top, “Noisy” denotes original speech randomly selected
from channel 1-6 (except channel 2), namely single-channel
case. The second block from the top shows that enhanced
speech is obtained by the estimated IRM and PRM, using the
same 257-1024-1024-257 LSTM architecture. PRM(T1) and
PRM(T2) denote that the PRM is calculated with +10dB SNR
gain and +20dB SNR gain, respectively.

As a summary, the IRM estimated by LSTM is not effective
for improving ASR performance. For example, the WERs of
“Noisy” are 15.68% and 27.67%, while the WERs of “LSTM-
IRM” are 20.76% and 35.09% on the development and evalua-
tion sets in average, respectively. Next, for “LSTM-PRM(T1)”,
the proposed PRM estimated by LSTM can improve the ASR
performance directly when comparedg to the “Noisy” row
with a relative WER reduction of 3.07% and 6.32% (from
27.68% shown in the rightmost column of the top row in Table
1 to 25.93% shown in the rightmost column of the second
row) on the development and evaluation sets in average,
respectively. Finally, for “LSTM-PRM(T2)”, it destroyed the
ASR performance when compared to unprocessed “Noisy”
speech, but the performance of “LSTM-PRM(T2)” is better
than that of “LSTM-IRM”.

D. Experiments on progressive multi-targets (PMTs)

Based on the above analysis, we can find that the proposed
PRMs with different SNR gains have different influences on
the tradeoff between noise reduction and speech distortion. So,
the PMT model is proposed to estimate different PRMs and
PELPSs at different target layers.

The bottom three blocks of Table I show that enhanced
speech is obtained by the estimated PRM, PELPS, and fusion
method using the PMT model with 3 target layers. PMT-3T
denotes the LSTM-based progressive multi-target model with
3 target layers are used. “T1”, “T2” and “T3” denote the
output of target layer 1, 2 and 3, and also corresponding to the
PRM(T1), PRM(T2) and IRM, respectively. PRM, PELPS and
Fusion denote enhanced speech is obtained by PRM output,
PELPS output and the ensemble of the two outputs of PMT-3T.

First, “PMT-3T-T1-PRM”, the intermediate target with
+10dB SNR gain, can obtain the best performance at all
situations. And it also can improve the ASR performance when
compared to that of LSTM-PRM(T1) (shown as 27.68%) at
the rightmost column in the top row of the second block of
Table I, with a relative WER reduction of 8.71% and 10.37%
on RealData development and evaluation sets, respectively.
Furthermore, fusion of PRM and PELPS can further improve
the ASR performance when the performance of PELPS and
PRM is comparable as shown in T1 and T2 of Table I.
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OVERALL WER (%) COMPARISON OF DIFFERENT SE MODELS ON THE DEVELOPMENT AND TEST SETS OF REALDATA.

TABLE I
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Dev Set (Real) Eval Set (Real)
SE model BUS CAF PED STR AVG BUS CAF PED STR AVG
Noisy | 1896 1529  9.87 1461  14.68 | 40.42 2897 2427 17.09 27.68
LSTM-PRM(T1) 1640 17.05 1043 13.05 1423 | 37.26 29.32 2210 15.04 25.93
LSTM-PRM(T2) 17.52 2030 11.77 15.89 16.37 | 3845 3522 2538 17.56 29.15
LSTM-IRM(T3) 18.53 2552 13.10 17.56 18.68 | 42.64 39.69 28.51 19.54 3259
PMT-3T-T1-PRM 1544 1510 9.29 12.14 1299 | 33.03 2546 1941 15.04 23.24
PMT-3T-T2-PRM 17.30  19.78 11.90 1422 15.80 | 34.74 33.54 2371 1678 27.19
PMT-3T-T3-PRM 18.17 22.06 12.17 1551 1698 | 36.90 3490 2481 17.20 28.32
PMT-3T-T1-PELPS | 15.19 1631  9.57 1211 1330 | 33.24 2647 19.88 1442 23.50
PMT-3T-T2-PELPS | 16.88 20.36 11.19 13.87 1557 | 36.28 31.05 22.64 1620 26.54
PMT-3T-T3-PELPS | 22.69 3647 1842 2420 2445 | 4472 5058 3746 2338 39.03
PMT-3T-T1-Fusion | 15.49 1499 9.51 11.61 1290 | 3223 2445 19.71 1453 22.73
PMT-3T-T2-Fusion | 1698 1950 11.26 13.94 1542 | 36.12 3059 23.19 16.01 2647
PMT-3T-T3-Fusion | 20.64 27.02 14.16 18.61 20.11 | 40.27 40.16 3124 19.85 32.88

TABLE II
SNR GAIN CONFIGURATIONS FOR THE TARGET LAYERS.

K SNR gains for each target layer

3 10dB (Target 1-2)
5 5dB (Target 1-4)
2.5dB (Target 1-4), 5dB (Target 5-6)

~

Based on the above analysis, we can find the target of
PELPS and PRM with +10dB SNR gain is optimal for the
multi-condition trained AM we utilized in all ASR experi-
ments. Therefore, we increase from 3 to 5 tagets (5T) and
7 targets (7T) and directly summarize the results of optimal
target layer output of PMT-3T, PMT-5T and PMT-7T models
in Table. III. First, we can find that the fusion performance can
obtain stable improvements in all three models. Second, the
fusion performance of PMT-7T is better than that of PMT-
3T and PMT-5T. Finally, the proposed LSTM-based PMT
network, with the best configuration, outperforms the LSTM-
based single PRM-only model, with a relative WER reduction
of 13.31% (further down from 25.93% at the rightmost column
of the top row in Table 1 to 22.48% at the rightmost column
of the bottom row in Table 3) averaging over the RealData
evaluation set.

TABLE III
WER(%) RESULTS OF OPTIMAL TARGET LAYER OUTPUT OF PMT-3T,
PMT-5T AND PMT-7T MODELS ON EVALUATION SET OF REALDATA.

SE model BUS CAF PED STR AVG
PMT-3T 3223 2445 1971 1453 2273
PMT-5T 3240 24.09 1971 1420 22.60
PMT-7T 3215 2413 19.56 14.05 22.48

In Figure 2, we selected a representative sample utterance
from the RealData evaluation set for a further analysis. The
white box in the bottom spectrogram emphasizes the region

that are severely corrupted with speech distortions, resulting
in vanished speech information. From top to bottom, the SNR
targets were gradually increased and the background noises
were reduced. So the estimated clean speech target might show
good listening quality. However, with increased SNR, the non-
linear distortions introduced by the enhancement models were
also increased. For ASR, both high-level background noises
and speech distortions could lead to substitution, insertion and
deletion errors marked red. It seemed that the target layer with
+10dB SNR gain in the second spectrogram from the top made
the best tradeoff, yielding a totally correct recognition result
for this utterance.

IV. CONCLUSION

In this study, we extend our previous work of progres-
sive neural network based speech enhancement to learning
multiple-SNR targets and using it as a pre-processor for noise-
robust ASR. We investigate designing intermediate enhance-
ment targets so that the pre-processor can be directly used
at the recognition stage without retraining AMs. First, a new
learning target, namely the PRM, is proposed. Second, the
pre-processing neural network with PMTs aims at learning a
series of dual targets of both PRM and PELPS. Third, we
evaluate on ASR performance rather than the conventional
speech enhancement metrics. The tradeoff between reduced
background noises and increased speech distortions can be
controlled conveniently by PMTs at different target layers.
Experiments on the CHiME-4 ASR task show that the only
PRM as the learning target can achieve good WER reductions
when compare to unprocessed speech using multi-condition
trained AMs without retraining, with a relative WER reduction
of 6.32% averaging over the CHiME-4 RealData evaluation
set. Furthermore the proposed LSTM-based PMT network
with the best configurations outperforms the LSTM-based
single PRM-only model, with a further relative WER reduction
of 13.31% averaging over the same test set. In the future, we
will verify the effectiveness of our proposed PMT model on
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(a) Noisy speech
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(c) Speech enhanced by +20dB target layer
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(d) Speech enhanced by clean target layer

2. An example of 3 outputs from 7-target PMTL model with the

spectrograms and transcriptions by a multi-condition trained acoustic model:
(a) noisy speech, (b) speech enhanced by +10dB target layer, (c) speech
enhanced by +20dB target layer, (d) speech enhanced by clean target layer.

the

(1]

(2]

(3]

(4]
(5]

(6]

(71

(8]

CHIiME-5 challenge.

REFERENCES

Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks for
end-to-end speech recognition,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2017,
pp. 4845-4849.

W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke, “The
microsoft 2017 conversational speech recognition system,” in 20/8 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1IEEE, 2018, pp. 5934-5938.

C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen,
A. Kannan, R. J. Weiss, K. Rao, E. Gonina et al., “State-of-the-art
speech recognition with sequence-to-sequence models,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2018, pp. 4774-4778.

J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong, Robust automatic speech
recognition: a bridge to practical applications. Academic Press, 2015.
X. Xiao, S. Watanabe, H. Erdogan, L. Lu, J. Hershey, M. L. Seltzer,
G. Chen, Y. Zhang, M. Mandel, and D. Yu, “Deep beamforming net-
works for multi-channel speech recognition,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2016, pp. 5745-5749.

T. Higuchi, N. Ito, T. Yoshioka, and T. Nakatani, “Robust mvdr
beamforming using time-frequency masks for online/offline asr in noise,”
in 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2016, pp. 5210-5214.

J. Li, Y. Huang, and Y. Gong, “Improved cepstra minimum-mean-
square-error noise reduction algorithm for robust speech recognition,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2017, pp. 4865-4869.

Y. Tu, J. Du, L. Sun, F. Ma, and C.-H. Lee, “On design of robust
deep models for chime-4 multi-channel speech recognition with multiple
configurations of array microphones.” in INTERSPEECH, 2017, pp.
394-398.

[91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

(27

[28]

877
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 09:41:56 UTC from IEEE Xplore. Restrictions apply.

C. Donahue, B. Li, and R. Prabhavalkar, “Exploring speech enhancement
with generative adversarial networks for robust speech recognition,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2018, pp. 5024-5028.

M. Delcroix, Y. Kubo, T. Nakatani, and A. Nakamura, “Is speech en-
hancement pre-processing still relevant when using deep neural networks
for acoustic modeling?” in Interspeech, 2013, pp. 2992-2996.

J. Du, Q. Wang, T. Gao, Y. Xu, L.-R. Dai, and C.-H. Lee, “Robust
speech recognition with speech enhanced deep neural networks,” in
Fifteenth Annual Conference of the International Speech Communication
Association, 2014.

T. Gao, J. Du, L.-R. Dai, and C.-H. Lee, “Joint training of front-
end and back-end deep neural networks for robust speech recognition,”
in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 4375-4379.

A. Narayanan and D. Wang, “Improving robustness of deep neural net-
work acoustic models via speech separation and joint adaptive training,”
IEEE/ACM transactions on audio, speech, and language processing,
vol. 23, no. 1, pp. 92-101, 2015.

T. Yoshioka and M. J. Gales, “Environmentally robust ASR front-end for
deep neural network acoustic models,” Computer Speech & Language,
vol. 31, no. 1, pp. 65-86, 2015.

K. Han, Y. He, D. Bagchi, E. Fosler-Lussier, and D. Wang, “Deep neural
network based spectral feature mapping for robust speech recognition,”
in Sixteenth Annual Conference of the International Speech Communi-
cation Association, 2015.

F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux, J. R.
Hershey, and B. Schuller, “Speech enhancement with LSTM recurrent
neural networks and its application to noise-robust ASR,” in Interna-
tional Conference on Latent Variable Analysis and Signal Separation.
Springer, 2015, pp. 91-99.

S.-J. Chen, A. S. Subramanian, H. Xu, and S. Watanabe, “Building state-
of-the-art distant speech recognition using the chime-4 challenge with a
setup of speech enhancement baseline,” in Interspeech, 2018.

H. Tang, W.-N. Hsu, F. Grondin, and J. Glass, “A study of enhancement,
augmentation, and autoencoder methods for domain adaptation in distant
speech recognition,” arXiv preprint arXiv:1806.04841, 2018.

T. Gao, J. Du, L.-R. Dai, and C.-H. Lee, “Densely connected pro-
gressive learning for LSTM-based speech enhancement,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5054-5058.

——, “SNR-based progressive learning of deep neural network for
speech enhancement.” in INTERSPEECH, 2016, pp. 3713-3717.

L. Sun, J. Du, T. Gao, Y.-D. Lu, Y. Tsao, C.-H. Lee, and N. Ryant,
“A novel LSTM-based speech preprocessor for speaker diarization in
realistic mismatch conditions,” in 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2018,
pp. 5234-5238.

W. Hartmann, A. Narayanan, E. Fosler-Lussier, and D. Wang, “A direct
masking approach to robust ASR,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 21, no. 10, pp. 1993-2005, 2013.

A. Narayanan and D. Wang, “Ideal ratio mask estimation using deep
neural networks for robust speech recognition,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 7092-7096.

, “Investigation of speech separation as a front-end for noise robust
speech recognition,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 22, no. 4, pp. 826835, 2014.

L. Sun, J. Du, L.-R. Dai, and C.-H. Lee, “Multiple-target deep learning
for LSTM-RNN based speech enhancement,” in Hands-free Speech
Communications and Microphone Arrays (HSCMA), 2017. 1EEE, 2017,
pp- 136-140.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700-4708.
E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An
analysis of environment, microphone and data simulation mismatches in
robust speech recognition,” Computer Speech & Language, vol. 46, pp.
535-557, 2017.

D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter,
0. Kuchaiev, Y. Zhang, F. Seide, H. Wang et al., “An introduction
to computational networks and the computational network toolkit,”
Microsoft Technical Report MSR-TR-2014-112, 2014.




